Sensitivity of Latent Heat Flux from PILPS Land-Surface Schemes to Perturbations of Surface Air Temperature

(Manuscript received 9 September 1996, in final form 8 August 1997)

ABSTRACT

In the PILPS Phase 2a experiment, 23 land-surface schemes were compared in an off-line control experiment using observed meteorological data from Cabauw, the Netherlands. Two simple sensitivity experiments were also undertaken in which the observed surface air temperature was artificially increased or decreased by 2 K while all other factors remained as observed. On the annual timescale, all schemes show similar responses to these perturbations in latent, sensible heat flux, and other key variables. For the 2-K increase in temperature, surface temperatures and latent heat fluxes all increase while net radiation, sensible heat fluxes, and soil moisture all decrease. The results are reversed for a 2-K temperature decrease. The changes in sensible heat fluxes and, especially, the changes in the latent heat fluxes are not linearly related to the change of temperature. Theoretically, the nonlinear relationship between air temperature and the latent heat flux is evident and due to the convex relationship between air temperature and saturation vapor pressure. A simple test shows that, the effect of the change of air temperature on the atmospheric stratification aside, this nonlinear relationship is shown in the form that the increase of the latent heat flux for a 2-K temperature increase is larger than its decrease for a 2-K temperature decrease. However, the results from the Cabauw sensitivity experiments show that the increase of the latent heat flux in the +2-K experiment is smaller than the decrease of the latent heat flux in the −2-K experiment (we refer to this as the asymmetry). The analysis in this paper shows that this inconsistency between the theoretical relationship and the Cabauw sensitivity experiments results (or the asymmetry) is due to (i) the involvement of the β2 formulation, which is a function of a series stress factors that limited the evaporation and whose values change in the ±2-K experiments, leading to strong modifications of the latent heat flux; (ii) the change of the drag coefficient induced by the changes in stratification due to the imposed air temperature changes (+2 K) in parameterizations of latent heat flux common in current land-surface schemes. Among all stress factors involved in the β2 formulation, the soil moisture stress in the +2-K experiment induced by the increased evaporation is the main factor that contributes to the asymmetry.
1. Introduction

In order to improve the understanding of the parameterization of land surface processes, the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) was initiated in 1992 as a World Climate Research Programme project. The overall goals of PILPS are to improve the performance of land-surface schemes, as they are used in climate and weather prediction models. The progress to date and planned future activities of PILPS are described in detail by Henderson-Sellers et al. (1995).

In Phase 2 of PILPS, land-surface schemes are being compared in off-line experiments that employ observed data. The Cabauw experiment (Phase 2a) used observation from Cabauw, the Netherlands (51°58′N, 4°56′E) (Beljaars and Viterbo 1994; Beljaars and Bosveld 1997), as the atmospheric forcing to drive 23 land-surface schemes (Table 1). Point-based observations of surface energy fluxes, net radiation, and upward longwave radiation data were used for validation of the simulations (Chen et al. 1997). In addition to these intercomparisons, two sensitivity experiments were undertaken using modified versions of the Cabauw forcing in which the surface air temperature was increased or decreased by 2 K at every model time step. Hereafter, the experiment with +2-K forcing is referred to as “Plus2” and that with −2-K forcing as “Minus2.”

The results from the off-line simulations in previous phases of PILPS (Pitman et al. 1993; Shao and Henderson-Sellers 1996) show that there were large discrepancies among the existing land-surface schemes in terms of the partitioning of surface net radiation into sensible heat and latent heat flux and partitioning of precipitation into evapotranspiration and soil water components (soil water storage, runoff, and drainage). Any attempt to understand the reasons for these discrepancies requires a systematic examination and intercomparison of individual parameterizations and processes within the models. To address the similar diversity in GCM simulations (i.e., when GCM simulations showed quite differing climatic responses to prescribed forcing such as increasing CO₂ (Schlesinger and Mitchell 1987), Wetherald and Manabe (1988) and Hansen et al. (1981) used a procedure in which basic variables, such as temperature, water vapor, surface albedo, and cloud cover, were individually varied to assess individual feedback processes. Cess and Potter (1988) presented a computationally more efficient means for both understanding and intercomparing climate feedback mechanisms in GCM simulations by using surface temperature perturbations as a surrogate climatic change for the purpose of studying atmospheric feedback processes.

Such techniques are also very useful for understanding and intercomparing the land-surface parameterization schemes. The sensitivity experiments discussed in this paper are analogous to the Cess et al. (1990) experiments, which evaluated cloud forcing sensitivities in GCMs by artificially increasing and then decreasing prescribed sea surface temperatures by 2 K. The purpose of these sensitivity experiments was to obtain a first-order estimate of the sensitivity of PILPS schemes to changed air temperatures and to determine whether different schemes respond to such changes differently and the extent to which any differences could be traced to different parameterizations. Although different experiments in which other forcing variables are also altered can be constructed, this paper describes only these first-order tests.

In this paper, the sensitivity of latent heat fluxes in current land-surface schemes to the change of air temperature will be described and analyzed. The behavior of the latent and sensible heat flux is discussed in section 2a, including the theoretical aspects of the relationship between latent heat flux and air temperature. The effect of the ““classic β” formulation on the parameterization of latent heat is discussed in section 3a, together with the influence of stress factors in the sensitivity experiments in section 3b. Finally, some conclusions are drawn in section 4.

2. Sensitivity of latent heat fluxes in the Plus2 and the Minus2 experiments

a. Behavior of the latent and sensible heat flux

Since the incoming radiation was not altered in the sensitivity experiments discussed here, the increase in air temperature must lead to changes in the latent or sensible heat. This is achieved by an adjustment of surface temperature. Figure 1 shows the differences in the annual mean effective temperatures, \(T_e \), the combined mean surface radiative temperature of the canopy and the ground) between Plus2 and Control (i.e., \(T_{e}^{Plus2} - T_{e}^{Control} \)), and that between Minus2 and Control (i.e., \(T_{e}^{Minus2} - T_{e}^{Control} \)) for all 23 PILPS schemes. It can be seen that annual mean effective surface temperature increases or decreases by about 1 K when air temperature increases or decreases by 2 K. BUCKET shows the largest annual mean increase (1.68 K) and the U.K. Meteorological Office (UKMO) the smallest (0.73 K) in Plus2 while SPONSOR showing the largest annual mean decrease (1.55 K) and the Goddard Institute of Space Sciences (GISS), ISBA the smallest (0.83 K) in Minus2. It should be noted that the change of the surface temperature with the increase or decrease of air temperature is the key mechanism that causes the change in the other quantities analyzed here (Qu et al. 1996).

Generally, most of the schemes exhibit similar, but opposite, behavior in Plus2 and Minus2. Figure 2 shows the difference of latent heat flux \(L \) and sensible heat flux \(H \) (W m\(^{-2}\)) between Plus2 (Minus2) and Control for all 23 land-surface schemes. Compared to the control experiment, latent heat flux increases by about 6 W m\(^{-2}\) in Plus2, with BUCKET showing the lowest increase
Table 1. List of models participating in PILPS phase 2a and some basic information about these landsurface schemes.

<table>
<thead>
<tr>
<th>Model</th>
<th>Contact</th>
<th>Number of layers for</th>
<th>Time step</th>
<th>Spinup time</th>
<th>Major purpose</th>
<th>Philosophy for</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>C. E. Desborough, A. J. Pitman</td>
<td>1 3 3 3 20 min</td>
<td>13 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>heat diffusion</td>
<td>Philip-de Vries (1990)</td>
</tr>
<tr>
<td>BATS</td>
<td>R. E. Dickinson, Z.-L. Yang</td>
<td>1 2 3 2 30 min</td>
<td>3 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>force–restore</td>
<td>Dickinson et al. (1986, 1993)</td>
</tr>
<tr>
<td>BUCKET</td>
<td>C. A. Schlosser, A. Robock</td>
<td>0 1 1 1 30 min</td>
<td>1 yr</td>
<td>GCM</td>
<td>implicit</td>
<td>heat balance</td>
<td>bucket + variation (1995)</td>
</tr>
<tr>
<td>CAPS</td>
<td>S. Chang, M. Ek</td>
<td>1 3 3 2 30 min</td>
<td>1 yr</td>
<td>GCM</td>
<td>Penman–Monteith</td>
<td>heat diffusion</td>
<td>Darcy’s law (1984)</td>
</tr>
<tr>
<td>CAPS LLNL</td>
<td>J. Kim</td>
<td>1 2 3 1 5 min</td>
<td>10 yr</td>
<td>GCM–mesoscale</td>
<td>full energy balance</td>
<td>heat diffusion</td>
<td>Darcy’s law + diffusion (1984)</td>
</tr>
<tr>
<td>CLASS</td>
<td>D. Verseghy</td>
<td>1 3 3 3 30 min</td>
<td>GCM</td>
<td></td>
<td>aerodynamic</td>
<td>heat diffusion</td>
<td>Darcy’s law</td>
</tr>
<tr>
<td>CSIRO9</td>
<td>E. Kowalczyk, J. R. Garratt</td>
<td>1 3 2 1 30 min</td>
<td>GCM</td>
<td></td>
<td>aerodynamic</td>
<td>force–restore</td>
<td>Kowalczyk et al. (1991)</td>
</tr>
<tr>
<td>ECHAM</td>
<td>L. Dümenil, J.-P. Schulz</td>
<td>1 5 1 1 30 min</td>
<td>5 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>heat diffusion</td>
<td>bucket + variation (1992)</td>
</tr>
<tr>
<td>GISS</td>
<td>F. Abramopoulos, Q. Zeng</td>
<td>1 6 6 6 30 min</td>
<td>13 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>aerodynamic</td>
<td>Darcy’s law (1988)</td>
</tr>
<tr>
<td>IAP94</td>
<td>Y. Dai</td>
<td>1 3 3 2 1 h</td>
<td>60 yr</td>
<td>GCM</td>
<td>Penman–Monteith</td>
<td>heat diffusion</td>
<td>Darcy’s law (1996)</td>
</tr>
<tr>
<td>MOSAIC</td>
<td>R. Koster, W. Wetzel, A. Boone</td>
<td>1 2 3 2 5 min</td>
<td>6 yr</td>
<td>GCM</td>
<td>flexible</td>
<td>Ohm’s law analogy</td>
<td>heat diffusion</td>
</tr>
<tr>
<td>PLACE</td>
<td>N. Gedney</td>
<td>1 7 5 5 2 30 min</td>
<td>flexible</td>
<td></td>
<td></td>
<td></td>
<td>Wetzel and Boone (1995)</td>
</tr>
<tr>
<td>SECHIBA2</td>
<td>J. Polcher, K. Laval</td>
<td>1 7 2 1 30 min</td>
<td>2 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>heat diffusion</td>
<td>Choisnel (1993)</td>
</tr>
<tr>
<td>SPONSOR</td>
<td>A. B. Shmakin, Y. Xue</td>
<td>1 2 2 2 24 h</td>
<td>3 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>energy balance</td>
<td>Shmakin et al. (1993)</td>
</tr>
<tr>
<td>SSIB</td>
<td>Y. Xue</td>
<td>1 2 3 1 30 min</td>
<td>2 yr</td>
<td>GCM</td>
<td>aerodynamic</td>
<td>energy balance</td>
<td>Xue et al. (1991)</td>
</tr>
<tr>
<td>SWAP</td>
<td>Y. M. Gusev, O. N. Nasonova</td>
<td>1 2 1 1 24 h</td>
<td>2 yr</td>
<td>mesoscale</td>
<td>energy + water balance</td>
<td>heat diffusion</td>
<td>water balance (1996)</td>
</tr>
<tr>
<td>SWB</td>
<td>J. Schaake, V. Koren</td>
<td>0 3 2 2 30 min</td>
<td>3 yr</td>
<td>mesoscale</td>
<td>Penman–Monteith</td>
<td>heat diffusion</td>
<td>bucket + variation (1996)</td>
</tr>
<tr>
<td>UGAMP2</td>
<td>N. Gedney, J. Lean</td>
<td>1 3 3 2 30 min</td>
<td>GCM</td>
<td></td>
<td>aerodynamic</td>
<td>heat diffusion</td>
<td>Darcy’s law (1995)</td>
</tr>
<tr>
<td>UKMO</td>
<td>E. Wood, D. Lettenmaier</td>
<td>1 2 3 3 1 h</td>
<td>2 yr</td>
<td>GCM–mesoscale</td>
<td>Penman–Monteith</td>
<td>heat diffusion</td>
<td>variable infiltration capacity + more</td>
</tr>
</tbody>
</table>

*Canopy; \(^{\circ} \) soil temperature; \(^{\circ} \) soil moisture; \(^{\circ} \) roots; *the basic philosophy of BASE is described in the reference and a full description of the scheme is in preparation.
(2.1 W m\(^{-2}\)) and CAPS the highest (9.6 W m\(^{-2}\)), and decreases by about 11 W m\(^{-2}\) in Minus2, with UGAMP2 showing the lowest decrease (5.6 W m\(^{-2}\)) and VIC-3L the highest (17.0 W m\(^{-2}\)) (Fig. 2a). SPONSOR is the only scheme that produces a small decrease of latent heat flux in Plus2. A possible reason for this behavior will be discussed in section 3b(3). Sensible heat flux decreases by about 12 W m\(^{-2}\) in Plus2, with CAPS showing the largest decrease (16.2 W m\(^{-2}\)) and SPONSOR the lowest (4.7 W m\(^{-2}\)), and increases about 16 W m\(^{-2}\) in Minus2, with VIC-3L showing the highest increase (23.7 W m\(^{-2}\)) and SWAP the lowest (9.9 W m\(^{-2}\)) (Fig. 2b). It should be noted here that for Plus2 the annual means of sensible and latent heat fluxes have ranges across the schemes of 31 and 23 W m\(^{-2}\), respectively, and for Minus2 of 24 and 28 W m\(^{-2}\), respectively. These ranges are of a similar magnitude as those for the control experiment, which is significantly larger than the uncertainties of the measurements (Chen et al. 1997). After Beljaars and Bosveld (1997), the observational errors of the Cabauw dataset are within ±5 W m\(^{-2}\) for sensible heat flux and ±10 W m\(^{-2}\) for surface net radiation and latent heat flux.

The changes in the latent heat fluxes follow from the dependence of the latent heat flux on the specific humidity gradient. In many PILPS schemes, the latent heat flux is parameterized as

\[L = \beta_s \times L_s, \]

where \(L_s \) is the potential evaporation (scaling evaporation) and \(\beta_s \) is a function of a series of stress factors that limit the evaporation. For most of the schemes in PILPS, \(L_s \) and sensible heat fluxes \((H) \) are parameterized as follows:
FIG. 2. Difference of annual mean (a) latent heat flux L and (b) sensible heat flux H (W m$^{-2}$) between Plus2 (Minus2) and control for 23 land-surface schemes.

\[L_s = \lambda \rho U C_e [q_a(T_s) - q_s] \]

(2)

and

\[H = \rho U C_H c_p (T_s - T_a), \]

(3)

where λ is the latent heat of vaporization, q_s is saturation specific humidity, q_a is the specific humidity of air at reference height, T_s is the surface temperature (ground and/or canopy temperature), T_a is the air temperature at reference height, ρ is air density, U is the wind speed at reference height, and C_e and C_H are drag coefficients for latent and sensible heat fluxes, respectively. Ignoring the effects of β, and the drag coefficient, the increases of T_s in Plus2, for example, leads to an increase of latent heat flux [because q_a and U in Eq. (2) are unchanged in the sensitivity experiments and the change in ρ is negligibly small]. For sensible heat flux [Eq. (3)], both T_s and T_a are increased for Plus2. However, since the increase of T_s induced by the increase of T_a is always smaller than the increase of T_a itself, the net effect is that sensible heat flux decreases in Plus2.

On the other hand, if air temperature is decreased by 2 K, T_s will decrease. Thus latent heat flux decreases and sensible heat flux increases.

Figure 3 shows the differences of L and H between Plus2 and Minus2. It can be seen that $|H_{2-2}|$ is larger than $|L_{1-2}|$ for all schemes; that is, sensible heat flux is more sensitive to the prescribed change of air temperature than latent heat flux. This is because of the linear relationship between H and T_s [Eq. (3)]. It can also be seen that if L of a certain scheme is sensitive to the change of air temperature, H is also sensitive.

The interesting result with regard to the behavior of latent heat flux is that the increases or decreases of latent heat flux in Plus2 and Minus2 are not linear with respect to the prescribed equal and opposite changes in air temperature (+2 K and −2 K). Figure 4 illustrates this nonlinearity. For clarity, 6 out of 23 schemes are shown, representative of median (UKMO, CLASS, SSIB, CSIRO9, ECHAM) and extreme (BUCKET) performance in the...
control experiment (cf. Chen et al. 1997). For latent heat flux, the nonlinear relation to the change of air temperature is evident.

The crucial point here is that for most schemes the nonlinear relationship between latent heat flux and air temperature is shown by the increase of latent heat flux in Plus2 being much smaller than the decrease of latent heat flux in Minus2 (Fig. 2a). If we define

\[r_L = \frac{[L^2 - L^C]}{[L^2 - L^C]} \quad \text{(4)} \]

this result can also be described as

\[r_L < 1. \quad \text{(5)} \]

In the following sections, the theoretical aspects of the relationship between \(L \) and air temperature will be illustrated through an investigation of the formulation of \(L \), [Eq. (2)], and then we try to explain the behavior of latent heat flux in the Plus2 and Minus2 Cabauw experiments.

b. Theoretical aspects of the relationship between \(L \), and air temperature

Equation (2) shows clearly that there is a nonlinear relation between surface temperature and \(L \), induced by the nonlinearity between surface temperature and saturation specific humidity. A numerical evaluation of Eq. (2) will be used here to illustrate the response of \(L \) to the change of air temperature. Fixing all variables in Eq. (2) except \(T_s \) and \(\lambda \) (\(\lambda \) changes with \(T_s \)) and assuming \(\rho = 1.292 \text{ (kg m}^{-3}\text{)}, U = 5.0 \text{ (m s}^{-1}\text{)}, C_e = 0.00597 \text{ (appendix of Chen et al. 1997)}, q_a = 0.005 \text{ (kg kg}^{-1}\text{)}, \) we allow \(T_s \) to increase or decrease 1 K because Fig. 1 shows that annual mean effective surface temperature increases or decreases by about 1 K when air temperature increases or decreases by 2 K. These changes in \(T_s \) are imposed upon a base surface temperature that varies from \(-10^\circ\text{C}\) to \(30^\circ\text{C}\) to match the annual range of air temperature in Cabauw (Beljaars and Bosveld 1997). In this numerical test, we use the symbol \(L_s^C \) to represent...
Fig. 4. Annual sensible heat flux vs latent heat flux for Cabauw control experiment, Plus2, and Minus2 for six chosen schemes that are representative of medium (UKMO, CLASS, SSIB, CSIRO9, ECHAM) and extreme (BUCKET) performance in the control experiment.

Fig. 5. $|L_{s1} - L_{c1}|$ and $|L_{s1} - L_{c2}|$ (W m$^{-2}$) at different base surface temperatures. Here L_{s1} and L_{s2} represent the potential evaporation for increasing and decreasing of surface temperature by 1 K from a base surface temperature, respectively. Also, L_{c} is L_{s} at the base surface temperature.

L_{s} for T_{s} increased by 1 K, L_{s1} to represent L_{s} for T_{s} decreased by 1 K, and L_{c} for control.

Figure 5 shows the difference (absolute values) between L_{s1} and L_{c} and the difference between L_{s2} and L_{c} under different base surface temperature. If the two lines in Fig. 5 coincided, L_{s} would have a linear dependence on surface temperature. However, Fig. 5 shows that only when the base surface temperature is below about -5°C are the differences between $|L_{s1} - L_{c}|$ and $|L_{s2} - L_{c}|$ so small that the dependence of L_{s}
on T_s is quasi linear. This is not the case for the most of the year in Cabauw: all mean monthly air temperatures in Cabauw are higher than 0°C (Beljaars and Bosveld 1997; Chen et al. 1997).

The interesting point here is that the nonlinear change of L_s with regard to the linear change of temperature is shown in a way that the amount of increase of L_s for +1 K, T_s is larger than the amount of decrease of L_s for -1 K, T_s that is, $|L_s^{+1} - L_s^0| > |L_s^{-1} - L_s^0|$. However, in the Cabauw sensitivity experiments $|L_s^{+2} - L_s^0|$ is much smaller than $|L_s^{-2} - L_s^0|$ (i.e., $r_s < 1$). This implies that the nonlinear behavior of L in the Cabauw sensitivity experiments cannot be attributed to the nonlinear relationship between T_s and q_a in the formulation of L_s, [Eq. (2)] used by the PILPS schemes. As mentioned in section 2a, however, in the Cabauw sensitivity experiments, a so-called β_s formulation is generally involved in the parameterization of L (Shao et al. 1994; Mahfouf and Noilhan 1991; Kondo et al. 1990). The effect of β_s on the relationship between L and T_s has not been considered in the numerical test above. Also not considered in the numerical test above is the effects of the changes in drag coefficient induced by the change of the stratification due to the imposed change of air temperature by ± 2 K. These will be reviewed in the next sections.

3. The formulation of latent heat fluxes in current land-surface parameterizations

a. The β adjustment

As mentioned in section 2a, latent heat flux is commonly parameterized by using Eq. (1) in PILPS schemes. Most of the schemes determine L_s by using the aerodynamic method [Eq. (2)], while a few schemes (Table 1) use the Penman–Monteith formulation. We first consider the effect of β_s on the latent heat flux in these sensitivity experiments and, for clarity, assume drag coefficient C_E does not change in the sensitivity experiments.

For the schemes using the aerodynamic method to determine the scaling evaporation, L, takes the same form as Eq. (2). Hence, Eq. (1) can be written as

$$L = \beta_s \times \lambda p U C_E (q_a(T_s) - q_s).$$

Equation (6) is usually employed for evaporation over bare soil. However, it can also be used in a broad sense for total evaportranspiration over a ground surface that is partially or completely covered by vegetation. Considering that latent heat flux is contributed by bare soil evaporation (L_{soil}) and plant transpiration (L_{plant}), that is,

$$L = (1 - \sigma_f) L_{\text{soil}} + \sigma_f L_{\text{plant}},$$

where σ_f is the fractional area covered by vegetation. Here L_{soil}, L_{plant} are often parameterized as

$$L_{\text{soil}} = \beta \times \lambda p (q_a(T_s) - q_s)/r_s,$$

or

$$L_{\text{plant}} = \lambda p (q_a(T_s) - q_s)/(r_a + r_s).$$

and

$$L_{\text{soil}} = \lambda p U C_E (\alpha \times q_a(T_s) - q_s).$$

Here we demonstrate that the involvement of β_s formulation in the parameterization of latent heat flux and the change of β_s induced by the increase and decrease of air temperature in the sensitivity experiments is the reason that causes $r_s < 1$ for the schemes using the aerodynamic method. For simplicity, we assume that β_s is only a function of soil moisture and assess its effects on the latent heat flux in the sensitivity experiments.

Soil moisture for Plus2 is lower than that for the control experiment and that for Minus2, due to the increase of evaporation in Plus2 [see section 3b(3)]. This, therefore, leads to differences in β_s for Plus2 and...
Table 2. $|L^{+1} - L^\epsilon|$ and $|L^{-1} - L^\epsilon|$ in the case with and without β_e adjustment.

| ΔT | Control $|L^{+1} - L^\epsilon|$ | Control $|L^{-1} - L^\epsilon|$ |
|-----------|------------------|------------------|
| T_c (W m$^{-2}$) | 317.5 | 217.1 |
| β_e | 0.52 | 0.75 |
| $L_c \times \beta_e$ | 165.1 | 162.8 |

Table 2 gives L^{+1}, L^{-1}, and L^ϵ for an arbitrary base temperature, $T_c = 283$ K. It can be seen that, after adjusting L with β_e, the relation is shifted, that is, $|L^{+1} - L^\epsilon|$ is smaller than $|L^{-1} - L^\epsilon|$. This is then consistent with the situation in Cabauw sensitivity experiments. It is clearly shown that β_e has a profound effect on the performance of L. This becomes still clearer if we replot Fig. 5b with L adjusted by β_e.

Figure 6 shows $|L^{+1} - L^\epsilon|$ and $|L^{-1} - L^\epsilon|$ at different base surface temperatures and for two different sets of β_e value. In Fig. 6a, the β_e values in Table 2 are used, that is, $\beta_e^z = 0.52$, $\beta_e^z = 0.75$, $\beta_e^c = 0.65$. It can be seen that $|L^{+1} - L^\epsilon| < |L^{-1} - L^\epsilon|$ when the surface temperature is between about 3° and 10°C. If we artificially tune β_e (i.e., assume $\beta_e^z = 0.46$, $\beta_e^z = 0.70$, $\beta_e^c = 0.54$), but still keep $\beta_e^z < \beta_e^c < \beta_e^z$, that is, accepting that modeled soil moisture for Plus2 is lower than that for the control experiment and that for Minus2 is higher than the control experiment, it can be seen that $|L^{+1} - L^\epsilon|$ is generally less than $|L^{-1} - L^\epsilon|$, except for a small range around a surface temperature of about 7°C but which itself depends on the value of β_e (Fig. 6b). The location of this temperature range, here 7°C, is arbitrary, depending on q_w chosen for the test. It happens here that q_w at the points around 7°C is nearly equal to q_{w_i}.

The analysis above shows that the involvement of the β_e formulation in the parameterization of latent heat flux causes the nonlinearity of L with regard to the linear change of air temperature in the form that the increase of latent heat flux in Plus2 is much smaller than its decrease in Minus2, that is, $r_{\theta} \ll 1$. Without the involvement of the β_e formulation, the nonlinearity is different, namely, the increase of latent heat flux in Plus2 is larger than its decrease in Minus2, as discussed in section 2b.

For the schemes using the Penman–Monteith formulation to determine the scaling evaporation, the situation is more complicated. The following analysis will
show, however, that \(r_s < 1 \) is still attributable to the involvement of a \(B_\delta \) formulation even for those schemes using a Penman–Monteith formulation.

The Penman–Monteith equation for the evaporation from wet surfaces can be written as

\[
L_s = \frac{\partial e_u}{\partial \bar{T}} \times (R_a - G) + \frac{\partial e_u}{\partial T}
\]

\[
\times \frac{\rho c_p (e_u(T_a) - e_u)}{r_u} + \frac{\partial e_u}{\partial \bar{T}} \times \gamma + \frac{\partial e_u}{\partial T}
\]

(cf. Mahrt and Ek 1984), where \(r_u \) is the aerodynamic resistance between the surface and the reference height; \(R_s \) is net radiation, \(G \) is ground heat flux that can be assumed proportional to \(R_s \), that is, \(G = a R_s \) [for the ground with vegetation cover, \(a \) ranges between 2 to 20 or so percent (Thom 1975)]; and \(\partial e_u/\partial T \) is the change of saturation vapor pressure with temperature. Assuming \(G = a R_s \), we have

\[
L_s = \frac{\partial e_u}{\partial T} e_u(T_a - 2) \times (R_n - R_s)
\]

\[
\times \left(\frac{\partial e_u}{\partial T} + \frac{\partial e_u}{\partial \bar{T}} \frac{\rho c_p e_u(T_a - 2)}{r_u} \right)
\]

and

\[
L_s = \frac{\partial e_u}{\partial T} e_u(T_a - 2) \times (R_n - R_s)
\]

\[
\times \left(\frac{\partial e_u}{\partial T} + \frac{\partial e_u}{\partial \bar{T}} \frac{\rho c_p e_u(T_a - 2)}{r_u} \right)
\]

where \(e_u(T_a + 2) = e_u(T_a - 2) \) and \(e_u(T_a) = e_u(T_a) \). Since the net radiation is given by

\[
R_s = (1 - \alpha_s) R_s + R_s \uparrow + R_s \downarrow - R_s \uparrow,
\]

where \(R_s \) is shortwave solar radiation, \(\alpha_s \) is surface albedo, \(R_s \uparrow \) is downward longwave radiation, and \(R_s \downarrow \) is upward longwave radiation. In the sensitivity experiments, \(R_s \) and \(R_s \downarrow \) are the same as those in the control experiment. In Plus2 and Minus2, \(\alpha_s \) changes in the winter months due to the change in snow cover induced by 2 K increase or decrease of air temperature. However, this change is quite small (Qu et al. 1996), and on the annual average it can be neglected; that is, we assume that \((1 - \alpha_s) R_s\) in Plus2 and Minus2 is also same as that in the control experiment. Hence, we have

\[
R_n^+ - R_n^- = R_s^\uparrow - R_s^- \uparrow.
\]

Since the emissivity of the surface was set to unity, we have

\[
R_s^\uparrow = \sigma(T_s^\uparrow)^4
\]

and

\[
R_s^- = \sigma(T_s^-)^4,
\]

where \(\sigma \) is the Stefan–Boltzmann constant, and \(T_s \) and \(T_l \) are the surface temperatures in the control and sensitivity experiments, respectively. If we write \((T_s^\uparrow - T_s^-) = \Delta T_s\), Eq. (19) can be expressed as

\[
R_n^+ - R_n^- = \sigma(T_s^\uparrow - (T_s + \Delta T_s))
\]

\[
= -\sigma[4T_s^\uparrow \Delta T_s + 6T_s^\uparrow (\Delta T_s)^2 + \cdots]
\]

\[
= -4\sigma T_s^\uparrow \Delta T_s (1 + 6\Delta T_s/4T_s),
\]

where negligible terms in \((\Delta T_s)^3\) and \((\Delta T_s)^4\) are omitted. The value \(\Delta R_e \) can therefore be expressed as

\[
R_e^+ - R_e^- = -4\sigma T_s^\uparrow \Delta T_s,
\]

with an error given by \(1.5\Delta T_s/T_s\). For \(T_s = 298 \) K, the error is only 0.5% per degree temperature difference. Using Eq. (23), Eqs. (16) and (17) can be rewritten as

\[
L_s = \frac{\partial e_u}{\partial T} e_u(T_a - 2) \times (R_n^\uparrow - R_n^-)
\]

\[
\times \left(\frac{\partial e_u}{\partial T} + \frac{\partial e_u}{\partial \bar{T}} \frac{\rho c_p e_u(T_a - 2)}{r_u} \right)
\]

and

\[
L_s = \frac{\partial e_u}{\partial T} e_u(T_a - 2) \times (R_n^\uparrow - R_n^-)
\]

\[
\times \left(\frac{\partial e_u}{\partial T} + \frac{\partial e_u}{\partial \bar{T}} \frac{\rho c_p e_u(T_a - 2)}{r_u} \right)
\]

where \(\Delta T_s = T_s^\uparrow - T_s^- \) and \(\Delta T_s = T_s^\uparrow - T_s^- \). In Eqs. (24) and (25), small changes of \(\gamma, \rho, e_u, \) and \(\partial e_u/\partial T \) are neglected. Therefore, without the \(B_\delta \) adjustment, the ratio \(r_l \times \Delta L_s = \Delta L_s^\uparrow - \Delta L_s^- \) is dependent on \(\Delta T_s, \Delta T_s, e_u^2 - e_u^2, \) and \(e_u^2 - e_u^2 \). As the signs of the first and second term of the right-hand side in Eqs. (24) and (25) are opposite, \(r_l \) could be smaller than 1. How-
ever, since $|\Delta T^*_a| = |\Delta T^*_c|$ (Fig. 1) and $|e^*_a - e^*_c|$ is always larger than $|e^*_a - e^*_c|$ because the function $e^*_a(T)$ is convex, r_t, is in fact larger than 1. Therefore, for the schemes using the Penman–Monteith formulation, $r_t < 1$ in the sensitivity experiments can still be also explained by the β_e adjustment as discussed above.

\[\frac{\Delta L^{+2}}{L} = \left| \frac{L^c - L^{+2}}{L^c} \right| = \left| 1 - \frac{q^*_a - q_a}{q^*_c - q_a \times \sigma^f/(0.67r^*_a + r_s)} \right|. \]

\[\frac{\Delta L^{-2}}{L} = \left| \frac{L^c - L^{-2}}{L^c} \right| = \left| 1 - 0.8 \times \frac{r^*_a + r_s}{0.67r^*_a + r_s} \right|. \]

where $\Delta L^{+2}/L$ is the relative change of latent heat flux induced by the change of drag coefficient due to the change of stratification when air temperature is increased by 2 K in Plus2. Here q^*_a and q^*_c are q_a at T^*_a and T^*_c, respectively. Note that σ^f in Eq. (26) does not change between Plus2, Minus2, and control. Using a typical value of $(q^*_a - q_a)/(q^*_c - q_a) = 1.3$ for Cabauw in Eq. (26), we have

\[\frac{\Delta L^{+2}}{L} = \left| \frac{L^c - L^{+2}}{L^c} \right| = \left| 1 - 1.3 \times \frac{r^*_a + r_s}{1.5r^*_a + r_s} \right|. \]

Similarly, we have the relative change of latent heat flux for Minus2:

\[\frac{\Delta L^{-2}}{L} = \left| \frac{L^c - L^{-2}}{L^c} \right| = \left| 1 - 0.8 \times \frac{r^*_a + r_s}{0.67r^*_a + r_s} \right|. \]

We examine how the relative change of L in Plus2 differs from that in Minus2. In fact, $r_L = (\Delta L^{+2}/L)/(\Delta L^{-2}/L)$, that is,

\[r_L = \left| \frac{L^c - L^{+2}}{L^c} \right| = \left| 1 - 1.3 \times \frac{r^*_a + r_s}{1.5r^*_a + r_s} \right|. \]

\[r_L = \frac{L^c - L^{-2}}{L^c} = \left| 1 - 0.8 \times \frac{r^*_a + r_s}{0.67r^*_a + r_s} \right|. \]

Figure 8 shows r_L as a function of r_a and r_s after Eq. (30). It can be seen from Fig. 8 that r_L decreases with the increase of r_a and the decrease of r_s. This implies that for the schemes with explicit stomatal control, the involvement of bulk stomatal resistance r_s reduces the influence of the change of r_a on L. However, it can be seen from Eq. (30) that accounting only for the effects of temperature on q_a,

\[r_L = \frac{1 - 1.3}{1 - 0.8} = 1.5. \]

Since the daily mean r_a in Cabauw is lower than 40 s m$^{-1}$ for most of the year, we assume $r_a = 30$ s m$^{-1}$. Because the observed midday average of r_a for Cabauw ranges from about 0–120 s m$^{-1}$ through the entire year.
Fig. 7. Diurnal variation of (a) bulk Richardson number and (b) drag coefficient C_Z, calculated after Mahrt and Ek (1984) for BATS (10–13 September 1987).

Fig. 8. r_L as a function of r_a (s m$^{-1}$) and r_s (s m$^{-1}$) after Eq. (30).

(Beljaars and Bosveld 1997) and the mean value is about 60 s m$^{-1}$, we assume $r_s = 60$ s m$^{-1}$ here. Using these values in Eq. (30), we then have $r_L = 1.1$. This accounts for the change in q_a and the change in r_a. The model average of $r_L = 0.57$, which can be considered as r_L accounting for change in q_a, r_a, and r_s. We can see from simple estimations above that the changes due to r_s appear to be only slightly larger than those due to r_a. This implies that drag coefficient effects in these sensitivity experiments have the same order of importance as the r_s effects, which will be discussed in the following sections.

It should be noted that for a cloudy day with lower net radiation, the differences of the calculated Richardson number between Plus2 and control and also between
Minus2 and control could be quite large during the day, such as on 13 September. For Plus2, for example, C_s^2 could be as large as 3. This may result in a higher relative change of latent heat flux being up to 50%. In this case, however, latent heat flux is also small (the daily mean L on 13 September is about 26 W m$^{-2}$, which is only about 60% of annual mean L) due to the smaller energy available for evaporation (for 13 September, daily mean R_n, 18 W m$^{-2}$) and therefore makes only a small contribution to the monthly or annual latent heat flux.

It should be pointed out that for the models without explicit stomatal control of transpiration and with no or small changes in predicted soil moisture for Plus2 and Minus2, the change in C_s may play a dominant role in resulting $r_s < 1$. Models SPONSOR and SWAP are examples of this situation. The transpiration in these two models is estimated by modifying potential evaporation through a B_{Ts} formulation that is a function of soil moisture only. Since the predicted soil moisture for Plus2, Minus2, and control is nearly the same and larger than W_0 [see section 3b(3)], B_{Ts} is nearly the same for Plus2, Minus2, and control. Therefore, $r_s < 1$ is mainly caused by decreases in C_s induced by the more unstable stratification in Plus2 in the calculation of the potential evaporation.

2) **Influence of Air Temperature on Bulk Stomatal Resistance**

The surface resistance (bulk stomatal resistance) involved in B_{Ts} is usually represented in land-surface schemes as

$$r_s = \frac{r_{s,\text{min}} R_{Ts} S_{Ts} V_{Ts} M_{Ts}^{-1}}{LAI}$$

(e.g., Noilhan and Planton 1989), where R_{Ts}, S_{Ts}, V_{Ts}, and M_{Ts} represent the dependence of r_s on solar radiation, air temperature, vapor pressure, and soil moisture, respectively; LAI is canopy leaf area index. The factor R_{Ts} measures the influence of the photosynthetically active radiation. As this does not change in Plus2 and Minus2, R_{Ts} also should not change.

The factor S_{Ts} introduces an air temperature dependence in the surface resistance. The parameterization of S_{Ts} is based on the fact that there is an optimal temperature for plant physiological processes that ranges from about 10°C to 40°C. If the temperature is in this range, there is no (or small) temperature stress and S_{Ts} is equal, or close, to 1. If the temperature is outside this range, it is likely to be a stress factor for the physiological processes of vegetation (here transpiration); hence S_{Ts}^{-1} will be larger than 1, that is, r_s will increase [Eq. (32)]. An example of S_{Ts} parameterization following Dickinson (1984) is given as follows:

$$S_{Ts}^{-1} = \frac{1}{[1.0 - 0.016(298.0 - T_a)^2]}$$

Figure 9 gives the variation of S_{Ts}^{-1} as a function of air temperature for control ($T_a = T_a$), Plus2 ($T_a = T_a + 2$), and Minus2 ($T_a = T_a - 2$) after Eq. (33). For $T_a = 285$ K, for example, S_{Ts} for Plus2 decreases only about 10% compared to control, that is, r_s may decrease about 10%. In this case, the change of latent heat flux is less than 10% [cf. Eq. (11)]. It can be seen that the increase or decrease of air temperature by only 2 K has virtually no, or only a very small, effect on S_{Ts}^{-1} and therefore a

![Figure 9](image-url)
small effect on r_s for most of the year in Cabauw, so that it can be ignored. Indeed, some PILPS land-surface schemes (e.g., SECHIBA, Ducoudre et al. 1993) neglect the influence of air temperature on r_s.

The factor V_f represents the effects of vapor pressure deficit of the atmosphere. Following Jarvis (1976), V_f can be expressed as

$$V_f = 1 - g(e_a(T_a) - e_a), \quad (34)$$

where g is a species-dependent constant. We take $g = 0.025$ (Noilhan and Planton 1989). It can be seen from Eq. (34) that if air temperature increases vapor pressure deficit will also increase. Hence V_f^{-1} will increase. However, the increase of V_f^{-1} is quite small. Figure 10 shows the calculated daily mean values of the difference of the stress factor $V_f^{-1} [\text{Eq. (34)}]$ between Plus2 and control and that between Minus2 and control. It can be seen that the differences of V_f^{-1} between Plus2 and control are within 0.1 for most of the year; that is, r_s may increase by 10% in Plus2 compared to control. In this case, the decrease of latent heat flux is less than 10%. On the other hand, the increase of air temperature will also make $e_a(T_a) - e_a$ increase and this will counteract the stress effect of the increase of vapor pressure deficit. Therefore, the influence of increasing or decreasing air temperature on stress factor V_f can also be neglected for most situations.

Of particular importance is the factor M_f, which accounts for the effects of soil moisture stress on latent heat flux. Usually, M_f varies between 0 and 1 when soil moisture W varies between W_{sat} and W_{cr}. In many schemes, M_f is a simple and explicit function of soil moisture. In some schemes (e.g., ISBA, CSIRO9, and VIC-3L), M_f takes the same form as Eq. (13). The change of predicted soil moisture in Plus2 and Minus2 leads to quite large change in M_f. For example, from the estimation given in section 3a, it can be seen that if M_f takes the form given in Eq. (13), the annual mean of M_f decreases from 0.65 for the control experiment to 0.52 for Plus2. That means an increase of r_s of about 25% for Plus2 compared to control, which will have a significant influence on latent heat flux. Thus, it can be seen that changes in the soil moisture in these sensitivity experiments induced (indirectly) by the increase or decrease of forcing air temperature plays an important role on the change of the scaling parameter β_s and therefore is one of the major factors affecting the behavior of the changes in latent heat flux.

3) Behavior of soil moisture and its effect on latent heat flux in the sensitivity experiments

Figure 11a gives the difference of the annual mean soil moisture of the top 1-m soil layer W between Plus2 (Minus2) and control for all schemes. It can be seen that soil moisture decreases in Plus2 and increases in Minus2 for most of the schemes; the exception being SEWAB, which shows no change. This response is attributable to the behavior of latent heat flux, which increases in Plus2 and decreases in Minus2. However, the extent of the decrease (increase) of soil moisture in Plus2 (Minus2) is very different among the PILPS schemes. This can be also seen in Fig. 11b, which gives the absolute value of the difference of soil moisture between Plus2 and Minus2, that is, $|W_t^{Plus2} - W_t^{Minus2}|$. Some schemes (BASE, BUCKET, CAPS, GISS, ECHAM, PLACE, MOSAIC, CSIRO9, CAPSNCM, VIC-3L) show large $|W_t^{Plus2} - W_t^{Minus2}|$ over 20 kg m$^{-2}$, with VIC-3L showing the highest value (85.8 kg m$^{-2}$). This implies that the soil moisture in these schemes is quite sensitive to the prescribed changes of air temperature. Other schemes (BATS, SSIB, SWAP, SEWAB, SPONSOR) show very small $|W_t^{Plus2} - W_t^{Minus2}|$, while GISS and MOSAIC show a large increase of soil moisture in Minus2 (37.9 and 29.3 kg m$^{-2}$, respectively) but only a small decrease in Plus2 (9.6 and 8.9 kg m$^{-2}$, respectively). Another “outlier” is PLACE, which produces a small increase of soil moisture in Minus2 (9.0 kg m$^{-2}$) but a large decrease in Plus2 (19.7 kg m$^{-2}$).

The very small $|W_t^{Plus2} - W_t^{Minus2}|$ values for BATS, SSIB, SWAP, SEWAB, and SPONSOR are due to the fact that the soil moisture below 1-m depth was prescribed as saturated in these schemes. Since the schemes allow water movement crossing the 1-m interface, the decrease of root zone soil moisture in Plus2 induced by high evaporation under imposed higher air temperature can be compensated by the water supply from the soil below 1 m (water table). For SWAP and SPONSOR, the predicted soil moisture for Plus2, Minus2, and control is in fact nearly the same and near or larger than W_{cr}. There is no straightforward correlation between soil moisture and latent heat flux in terms of their sensitivity to the prescribed changes in air temperature (Figs. 11b,c). For example, both BATS and SSIB show large $|L_{t}^{Plus2} - L_{t}^{Minus2}|$, but very small $|W_t^{Plus2} - W_t^{Minus2}|$.

As discussed in section 3b(2), for most schemes soil moisture stress factors most strongly influence the change of β_s and therefore the change of latent heat...
flux in the sensitivity experiments. In Plus2, the decrease of soil moisture under higher temperature (+2 K) leads to the decrease of β_g through the decrease of M_f, which is an indication of soil moisture stress, and hence the increase of r_s, which, in turn, leads to lower evaporation. The effect of the soil moisture stress in Plus2 is quite strong for some schemes, for which monthly latent heat flux for Plus2 is smaller than that for control in summer months. Figure 12 shows the monthly variation of latent heat flux for BUCKET, CAPS, CAPSNUCM, ISBA, CLASS, CSIRO9, and ECHAM. It can be seen in Fig. 12 that monthly mean L of these schemes in Plus2 is lower than or nearly the same as that in the control experiment in summer months, mostly in July. The situation $L^{+2} < L^c$ can only happen when a β_g formulation is involved and L^{+2} is reduced by a small β_g, in which M_f reflects strong soil moisture stress in Plus2 so that L^{+2} is even smaller than or equal to L^c. This argument...
seems to be supported by reviewing the variation of daily latent heat flux and root zone soil moisture in July for some schemes.

Figures 13a,b show the daily latent heat flux and root zone soil moisture in July (day 182–day 212) for CLASS. It can be seen that $L_f^{-2} < L^c$ from day 192 to day 197 (Fig. 13a), during which the predicted root zone soil moisture for Plus2, W_f^{-2}, goes down to the lowest level of the year (Fig. 13b). Figures 13c,d show the case for ISBA. It can be seen that $L_f^{-2} < L^c$ from day 186 to day 197, which also corresponds to the time when the predicted root zone soil moisture for Plus2 shows its lowest values of the year. For some schemes (BASE, PLACE, SWB, VIC-3L), although the monthly mean L_f for July in Plus2 is larger than that in control, the daily latent heat flux for Plus2 is smaller than that for control for some periods in July. Figures 13e,f show the case for VIC-3L as an example. It can be seen that VIC-3L shows $L_f^{-2} < L^c$ from day 190 to day 197, during which the predicted root zone soil moisture shows its lowest values of the year.

It should be noted that most schemes use different formulations for M_f to describe the limitation of soil moisture to latent heat flux. This implies that different schemes may have different criteria on soil moisture stress, which is caused by (i) differences in M_f, formulation involved in individual schemes, (ii) differences in the definition of critical soil moisture, and (iii) by using different soil moisture in M_f; for example, some models use soil moisture for the root zone in M_f, while some other models may consider the root distribution and use soil moisture for the surface layer. We can see from Fig. 13 that different schemes suffer soil moisture stress at totally different soil moisture levels. For Plus2, CLASS shows soil moisture stress ($L_f^{-2} < L^c$) at root zone soil moisture, W_f^{-2}, being around 390 mm (Fig. 13b), ISBA at W_f^{-2} around 310 mm (Fig. 13d), and VIC-3L at W_f^{-2} around 260 mm (Fig. 13f). From these results we may derive that the difference in the parameterization of the latent heat flux versus soil moisture relationship (both M_f and β for bare soil) across the models might be one of the important reasons for discrepancies among the models. More studies are needed on this issue.

Furthermore, we can also see that the use of the M_f formulation makes it difficult to identify the effect of soil moisture on latent heat flux, because soil moisture has only an indirect relation to latent heat flux through its presence in β_f. In this case, latent heat flux is directly modified by β_f every model time step and is thus sensitive to changes in β_f. Therefore, the formulation of M_f and β (for soil evaporation) parameterizations in β_f.

Fig. 12. Monthly variation of latent heat flux of BUCKET, ISBA, CSIRO9, CAPS, CAPSNMC, CLASS, and ECHAM.
would have significant influences on predicted latent heat, even if the soil moisture is accurately estimated. This relationship will also become further complicated when the feedbacks between soil moisture and evaporation are considered.

4. Summary and conclusions

Using 23 land-surface schemes, driven off-line by observations from Cabauw, the Netherlands, two sensitivity experiments have been undertaken in which the forcing air temperature was increased or decreased by 2 K and all other parameters remained as in the control experiment. The results show the following.

1) On an annual timescale, all schemes exhibit qualitatively similar and plausible responses to the prescribed 2-K increase or decrease in air temperature, although there are quantitatively significant differences among the schemes. In Plus2 (Minus2), all schemes show that (i) T_s increases (decreases), (ii) latent heat flux increases (decreases), (iii) sensible heat flux decreases (increases), and (iv) soil moisture decreases (increases).

2) The change of latent heat and sensible heat flux is not linear with respect to the change of air temperature. Specifically, the increase of latent heat flux in the Plus2 experiment is smaller than the decrease of latent heat flux in the Minus2 experiment. This is partly due to the β_γ formulation involved in the parameterization of latent heat flux, which is a function of a series of stress factors that limit the scaling evaporation, and partly due to the changes in drag coefficient induced by the change in stratification as a consequence of the imposed change in air temperature (± 2 K).

3) Changes of soil moisture play an important role in the changes of β_γ in these sensitivity experiments. For most schemes, one of the reasons for the fact that $|L^{-2} - L^c|$ is much smaller than $|L^{-2} - L^c|$ in the sensitivity experiments is the decrease of soil moisture in Plus2, which leads to a smaller β_γ, indicating soil moisture stress. Except for the schemes that specify their soil moisture below 1-m depth as saturated, the effect of soil moisture stress is especially strong for some schemes (BUCKET, CAPS, CAPSNNMC, ISBA, CLASS, CSIRO9, ECHAM, BASE, PLACE, SWB, VIC-3L) for which the latent heat flux in Plus2 is even smaller than that in the control experiment in summer months.
Acknowledgments. PILPS is funded by grants from the Australian Research Council and through NOAA to The University of Arizona. We also acknowledge support from National Greenhouse Advisory Committee of the Department of Environment, Sports and Territories, Australia. The PILPS team acknowledges the Royal Netherlands Meteorological Institute (KNMI) for providing the Cabauw data, which are the result of a long-term boundary layer monitoring program in the Netherlands, and the active participation of all “PILP-ers.”

REFERENCES

comparison of Land-surface Parameterization Schemes. GEWEX Tech. Note, IGPO Publication Series No. 24, 50 pp. [Available from Climatic Impacts Centre, Macquarie University, North Ryde, NSW 2109, Australia.]

